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Abstract
Numerical simulations of current–voltage curves in electron-only devices are used to discuss the influence of charged defects on the

information derived from fitting space-charge-limited current models to the data. Charged, acceptor-like defects lead to barriers

impeding the flow of electrons in electron-only devices and therefore lead to a reduced current that is similar to the situation where

the device has a built-in voltage. This reduced current will lead to an underestimation of the mobilities and an overestimation of

characteristic tail slopes if analytical equations are used to analyze the data. Correcting for the barrier created by the charged defects

can, however, be a successful way to still be able to obtain reasonably accurate mobility values.
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Introduction
A frequently used method to analyze charge carrier transport in

organic semiconductors is based on space-charge-limited cur-

rent measurements performed on single carrier devices [1-14].

These devices consist of two contacts that are either both elec-

tron-injecting or both hole-injecting, meaning that the

current–voltage curve of these devices is not determined by the

recombination of electrons and holes in the volume of the

device [15] but instead by the mobility and concentration of

carriers and the electric field in the device. If a device with two

electron injecting contacts were doped to be sufficiently n-type

that the electron concentration were determined by the doping

and not by the injected charges in a certain range of voltages,

the current–voltage curve in that range would be essentially

ohmic, and the conductivity of the system would depend on

mobility and electron concentration [16,17]. If the electron-only

device were, however, undoped and the injection at the contacts

efficient, the current density J would to a first approximation

not depend on the equilibrium electron concentration anymore.

Instead J would just depend on the mobility μ, which is typi-

cally the only unknown parameter, as well as the voltage V, the

device thickness d and the permittivity ε = ε0εr and would

ideally follow the Mott–Gurney law [18,19]
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(1)

Here ε0 is the vacuum permittivity and εr is the relative permit-

tivity. The Mott–Gurney law is frequently used to determine the

mobility of organic semiconductors used for light emitting

diodes and solar cells. However, its derivation uses three

assumptions that are often not applicable in organic semicon-

ductors, namely that the device is trap-free, that diffusion is

negligible and that the electric field at the injecting contact is

zero. All three assumptions are in general not correct, in par-

ticular the assumption that there are no charged defects in

organic semiconductors [20-26]. While there have been numer-

ous attempts to develop models to take traps in unipolar devices

into account [27-31], nearly all of them still rely on drift as the

only transport mechanism. However, traps will often lead to a

situation where diffusion currents cannot be neglected anymore,

which makes analytical approximations for this situation prob-

lematic [7,10,13].

In this article numerical simulations are used to show how the

presence of traps leads to deviations from the analytical equa-

tions typically used to analyze single-carrier current–voltage

curves. I will focus on acceptor-like traps in electron-only

devices, i.e., situations where the traps are negatively charged

when below the Fermi level. These negative charges will be-

have like p-type dopants and create a barrier for electrons. The

electrons first have to diffuse over the barrier created by the

negatively charged defects before they drift to the other contact.

This barrier leads to an exponential increase of current with

voltage for low voltages similar to the situation in a bipolar

diode with a nonzero built-in voltage. To understand the influ-

ence of the trap-induced barrier on the interpretation of

current–voltage curves, current–voltage curves are simulated

for different concentrations of traps using a drift–diffusion

solver, and then analytical equations are fitted to the simulated

curves to compare the apparent mobility and density of states

derived from the fit to the ones that were used as input for the

drift–diffusion simulation. The results of the simulations show

that using analytical equations in electron-only devices with

substantial concentrations of negatively charged defects can

result in strongly underestimated mobilities and overestimated

width of the exponentially decaying density of states.

Details of the simulation
The simulations are performed by using a commercial device

simulator called Advanced Semiconductor Analysis (ASA) that

was developed by the group of M. Zeman at the TU Delft

(Netherlands) [32,33]. The software solves the Poisson equation

(2)

and the continuity equations for the electrons and holes

(3)

(4)

Here, q is the elementary charge, φ is the electrical potential, ρ

is the space charge, x the spatial coordinate, n and p the free

electron and hole concentrations, F the electric field,

Dn,p the diffusion constant, and Jn and Jp are the electron and

the hole current. Note that the classical Einstein relation

(Dn,p = kT/q μn,p) is used to connect the diffusion constant and

the mobility. The Einstein relation is applicable even in disor-

dered semiconductors if the continuity equations are expressed

in terms of free carriers, as has been done here. The occupation

of the traps follows Shockley–Read–Hall statistics and is

described in detail in [34-36]. I use a Gaussian distribution of

traps

(5)

with a peak energy ET at midgap and a width of σΤ = 100 meV

similar to the values used by Nicolai et al. [13]. The total trap

concentration NT was varied in the simulations. It is assumed

that the defects are acceptor-like defects, i.e., that the defect is

negatively charged if occupied with an electron and neutral

when empty. The opposite situation would be a donor-like

effect that is positively charged when empty (occupied by a

hole) and neutral when occupied with an electron. The ratio-

nale of using acceptor-like defects is that many organic semi-

conductors are known to be p-type, i.e., to have acceptor like

defects, and to show improved transport after compensation of

the p-type dopants with n-type dopants [8,23,26,37,38].

Because organic semiconductors are generally disordered ma-

terials, it is important to investigate the effects of energetic

disorder on the results of our simulations. In order to take the

effect of disorder into account, a multiple trapping model

together with exponential band tails is used in some simula-

tions (Figure 3 and Figure 5, see below). The energy-dependent

densities of states NCBT and NVBT of these tails follow
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(6)

for the conduction-band tail and

(7)

for the valence-band tail. Here, N0 is a prefactor with the unit

1/(cm3·eV) and defines the concentration of tail states per

volume and energy interval at the conduction band and valence

band edge EC and EV. The conduction band tail is assumed to

consist of acceptor-like defects and the valence band tail of

donor-like defects [34,39]. It is assumed that the mobility of

electrons is zero below the conduction band edge and has a

constant value above, i.e., the influence from Poole–Frenkel

type effects is neglected for simplicity. The slope of the tails is

given by Ech and assumed to be the same for the conduction and

valence band in all cases. The boundary conditions at the

contacts are defined by keeping the distance between conduc-

tion band edge and Fermi level constant at 0.1 eV for both

contacts. Both contacts have high (105 cm/s) recombination

velocities for electrons and holes (cf. [40] for an exact defini-

tion of the boundary conditions).

Results and Discussion
The influence of diffusion on the
current–voltage curves
To understand the effect of charged defects on the

current–voltage curve of electron-only devices it is most

instructive to compare the simulated current–voltage curves

with band diagrams. Figure 1 compares the situation with and

without acceptor-like traps and depicts both the current–voltage

curves as well as the band diagrams at V = 1 V forward bias

(electrons are injected on the right and extracted on the left).

Table 1 gives the parameters used for the simulations. Both

simulated current–voltage curves are compared to the analyt-

ical equation (Mott–Gurney law) given by Equation 1. Interest-

ingly, already the simulation without any traps is only well

reproduced by the Mott–Gurney law at higher voltages, while

its slope tends to be more ohmic (~V) than space-charge-limited

(~V2) at lower voltages. This phenomenon has been described

in the past [41] and is related to the movement of the virtual

cathode (the point of zero electric field) as a function of voltage.

Figure 1b shows that the point of zero field is close to but not at

the cathode, even in the cases without traps. In the derivation of

the Mott–Gurney law it is assumed that the point of zero elec-

tric field is fixed at the actual cathode, which has previously

been shown to be incorrect [10].

Figure 1: (a) Current–voltage curves of a device with and without
charged acceptor-like defects with a total concentration NT =
1017 cm−3 and a Gaussian width of σ = 100 meV are compared to the
Mott–Gurney law (Equation 1). Band diagram of the device (b) without
charged defects and (c) with charged defects. The acceptor-like
defects in (c) create a barrier (indicated with a light red background)
due to their negative charge. The diffusion of electrons up the barrier
causes the reduced current in (a).

The most obvious effect, however, is that the current–voltage

curve of the device with traps is strongly reduced at low volt-

ages relative to both the simulation without traps and the

Mott–Gurney law. This is due to the barrier formed by the

charged defects as highlighted by the light red background in

the band diagram in Figure 1c. The traps are essentially always

below the quasi Fermi levels for electrons and holes and will

therefore be occupied with electrons. The space charge of the

electrons on the traps creates an electrostatic barrier (high-

lighted in red) close to the injecting contact that impedes the

flow of electrons from the injecting cathode at x = d towards the
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Table 1: All the parameters used in the simulations, if not stated otherwise. For the definition of the capture coefficients see Figure 2 in [39]. The
contact barrier is the distance between the Fermi level and conduction band edge at both contacts. This value is kept constant for all simulations
except for the one with Vbi = 1 V in Figure 2, where the contact barrier at the cathode (x = d) is 0.1 eV and the contact barrier at the anode (x = 0) is
1.1 eV. The relative permittivity used in all simulations is εr = 3.8 and the capture coefficient for the Gaussian defect is 10−10 cm3·s−1 for electrons and
holes.

no tails with tails

figure no. 1–4 3,5

mobility μ0 [cm2/Vs] 10−4 10−3

effective density of states NC = NV [cm−3] 1020 1020

density of tail states N0 [eV−1cm−3] 0 1020

characteristic tail slope Ech [meV] 0 variable or 50

capture coefficients (tails)

βn
+ [cm3·s−1] 0 10−12

βp
0 [cm3·s−1] 0 10−10

βp
− [cm3·s−1] 0 10−12

βn
0 [cm3·s−1] 0 10−10

band gap Eg [eV] 2.0 2.0
thickness d [nm] 100 100
surface recombination velocity S [cm/s] 105 105

contact barrier φb [meV] 0.1 0.1

electron extracting contact at x = 0. The existence of this barrier

means that more voltage has to be applied to achieve the same

current flow than without the barrier. Thus, the current at a

given voltage is reduced as seen in Figure 1a. In this context, it

is not important where the energy level of the defect is; as long

as it is an acceptor-like defect that is energetically below the

quasi Fermi levels for electrons and holes, the behavior will be

the same. However, when the Gaussian distribution of defects is

close to the quasi Fermi level at a given voltage only part of the

distribution will be occupied by electrons and therefore only

part of the distribution will contribute to the band bending.

Apart from acceptor-like defects, also nonzero built-in voltages

can lead to a situation where diffusion currents dominate the

current–voltage curve at low voltages. Figure 2a shows the cur-

rent–voltage curves of a device with a built-in voltage Vbi = 1 V

as compared to the current–voltage curve of the device with

traps that has been shown already in Figure 1. The built-in

voltage is created by setting the distance EC − EF = 1.1 eV at

the extracting contact while keeping EC − EF = 0.1 eV at the

injecting contact. In both cases, the qualitative behavior is

similar with a strongly reduced current at low voltages. The

band diagrams in Figure 2b and Figure 2c are now depicted at

short circuit and show that the shape of the barrier is completely

different in both cases but the height correlates with the amount

of reduction in current. The barrier in the case of the asym-

metric contacts is 1 V and leads to a stronger reduction in cur-

rent at low voltages than the smaller barrier in the case of the

symmetric contacts with traps.

The determination of mobilities using analyt-
ical equations
This comparison between two types of barriers is relevant

because the built-in voltage is often not known precisely [11]

and it is customary to correct for its influence by using V − Vbi

as the voltage axis [4,5]. At first, this seems like a problem,

because with the built-in voltage as a free parameter, it might be

possible to erroneously assign the influence of a trap to a higher

Vbi. To investigate that problem drift–diffusion simulations

were performed for a device with Vbi = 0 but with a varying

concentration of trap states, and the resulting current–voltage

curves were fitted to the Murgatroyd equation [19]

(8)

that is frequently used to determine the mobility of organic

semiconductors [9,42]. Here the parameter β controls the field

dependence of the current that is meant to describe the

Poole–Frenkel effect. However, in practice the factor β may be

affected by the influence of traps and trap-induced diffusion

currents. For the simulations shown in Figure 3 (see below), the

voltage Veff is defined as Veff = V − Vbi with Vbi being a fit para-

meter to understand the situation when the influence of traps is

erroneously attributed to an increased Vbi.

Figure 3 shows the mobility resulting from the fit of Equation 8

to the numerical simulation normalized to the value that was
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Figure 2: (a) Current–voltage curves of a device with charged
acceptor-like defects and a built-in voltage Vbi = 0 V (as in Figure 1a)
and a device with no defects but a built-in voltage Vbi = 1 V are
compared to the Mott–Gurney law (Equation 1). Band diagram of the
device (b) without charged defects and Vbi = 1 V and (c) with charged
defects and Vbi = 0 V. Both band diagrams are depicted at short circuit.

used as input for the simulation (μ = μn = μp = 10−4 cm2/Vs).

Note that the results hardly change when changing the mobility

in the range typical for organic semiconductors, therefore the

absolute value of the mobility is of limited importance in this

context. The simulated device is an electron-only device with a

thickness of 100 nm. See Table 1 for the parameters used in the

simulation. The first data set (line + filled squares) assumes that

there are no exponential tails and it leads to a nearly perfect

reproduction of the actual mobility. Thus, although the correc-

tion for Vbi is completely nonphysical the fitted mobilities are

very close to the ones used as input for the simulations. Even in

a case where there are exponential tails in addition to the vari-

able concentration of midgap defects (line + open triangles), the

correction for Vbi leads to a reasonably well approximated value

for the mobility. Although there is a mismatch between fitted

mobility and real mobility, this mismatch is only weakly depen-

dent on the concentration of traps and not unexpected given that

the Murgatroyd equation was not developed to deal with expo-

nential tails. Note that in the case with exponential tails, the

mobility is an effective value calculated as

(9)

where μ0 is the band mobility of the free electrons, n is the

concentration of free electrons and ntail the concentration of

electrons trapped in the conduction band tail. The voltage at

which the carrier concentrations are evaluated was arbitrarily

chosen as V = 1 V. This effective value takes into account that

only a part of the electrons is able to move and another part is

trapped in the shallow tail states.

Figure 3: Normalized mobility obtained by fitting the Murgatroyd equa-
tion to the simulated current–voltage curves of electron-only devices
as a function of the concentration of midgap defects. The fitted mobility
is normalized to the actual mobility that is used as an input parameter
in the simulation and the built-in voltage in Equation 8 is a free para-
meter. The actual built-in voltage used as input for the simulated cur-
rent–voltage curves is zero. The comparison between fitted and actual
mobility is done for two situations, one (lines + filled squares) with only
a variable concentration of midgap defects and one (lines + open trian-
gles) with the same variable concentration of defects and additional
exponential tails.

If the built-in voltage in the fit of Equation 8 is set to the

correct value of zero, obtaining the correct mobility using the

Murgatroyd equation becomes impossible at high trap concen-

trations. Figure 4a shows the normalized mobility as a function

of trap concentration for two different voltage ranges in which

the Murgatroyd equation is fitted to the simulated data. Because

the analytical equation neglects the predominant effect of diffu-

sion at low voltages and high defect concentrations, the fits

predict mobilities that are a strong function of defect concentra-

tion and that change dramatically depending on the voltage

range that is analyzed. There are two voltage ranges in which

the Murgatroyd equation can lead to a reasonable fit to the data.
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For high voltages V > 1 V (see Figure 4b), the influence of

space charge on the current–voltage curves is relatively weak

and the Murgatroyd equation gives a good fit with a moderate

uncertainty in mobility (one order of magnitude for a trap

density NT = 1017 cm−3). For low voltages V < 1 V, the expo-

nential dependence of current density on  can lead to a

good fit by using high values of β and extremely low values of

the mobility μ as shown in Figure 4c. In an ideal case with

Vbi = 0 and a negligible series resistance it would not be

possible to fit the whole range of voltages from around 0.1 V to

V >> 1 V well by using the Murgatroyd equation. However, as

shown in Supporting Information File 1, when correcting for

series resistances the shape of a fit using the Murgatroyd equa-

tion can look very similar to a simulation with charged defects.

The result that good fits are possible if data is corrected for a

voltage barrier means that the physical situations of having an

actual built-in voltage (see Figure 2b) and having a concentra-

tion of traps that leads to a barrier for majority-carrier transport

(Figure 2c) are similar in their effect on the current–voltage

curve. In both cases, the device behaves like a series connec-

tion of a diode-like element (the barrier) and a space-charge-

limited current regime. Correcting the voltage axis for the effec-

tive barrier will in both cases allow us to isolate the contribu-

tion from the space-charge-limited current regime. In this

context it may therefore be more important to understand that

there may be different origins of voltage barriers (the contacts

or the properties of the bulk), than to actually use a different

strategy to analyze the data in terms of mobilities. In addition,

the results suggest that any data analysis based on interpreting

the diffusion currents at low forward voltages in order to deter-

mine properties of traps [7,13] needs to exercise care in

attributing the diffusion to bulk or contact effects (see Figure S1

in Supporting Information File 1). To discriminate between

barriers due to bulk or contact effects, forward and reverse bias

current–voltage curves should be analyzed. Because bulk

effects would be symmetric while contact effects are not (see

Figure S2 in Supporting Information File 1), the reverse-bias

current–voltage curve may be used to determine the built-in

voltage. An alternative method could be to measure the capaci-

tance of the single-carrier device and analyze it as suggested by

van Mensfoort and Coehoorn [43].

The determination of characteristic tail slopes
from current–voltage curves
Although space-charge-limited current measurements are most

frequently used to measure mobilities in organic semiconduc-

tors, there have been attempts to use the slope of the

current–voltage curve on a log–log plot as a measure of the

density of localized states. The density of localized states is an

important property of the material, affecting both transport

Figure 4: Normalized mobility as a function of defect concentration if
the built-in voltage in Equation 8 is set to 0. Now, no correction for the
barrier created by the charged defects is done and the mobility is
underestimated at high trap concentrations. Because the
current–voltage curve is affected by the traps mostly at low voltages,
the mobility resulting from the fit will depend strongly on the range
used for fitting. Reasonable fit quality is either reached if the fit is done
for higher voltages V > 1 V or for lower V < 1 V. (b) and (c) show the
fits (lines) to the drift–diffusion simulations (symbols) for the two
different fitting ranges. Every second datapoint in (a) is presented in
(b) and (c).

[44,45] and recombination [36,39,46-57], and one that can

change as a function of device processing and during device de-

gradation [55]. Usually, an exponential tail of states is assumed
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that is characterized by a characteristic energy Ech as defined in

Equation 6 and Equation 7. Then, analytical equations are used,

as for instance the one by Mark and Helfrich [28]. While the

analytical approximations usually vary in their prefactors, they

agree on the proportionality between current and voltage that

follows [1,27,29,31,58]

(10)

where

(11)

This approximation, however, still requires diffusion currents to

be negligible. Thus, it is useful to look at the relation between

the tail slope that is used as input for the model and

the tail slope determined from a fit of Equation 10 to the cur-

rent–voltage curve. Figure 5 depicts this comparison for

different values of the concentration of midgap defects. The

more defects the system contains, the more diffusion will be

relevant. Diffusion currents however, as shown in Figure 1a and

Figure 2a, lead to a steeper increase of current with voltage than

predicted by the Mott–Gurney law. This steep increase of cur-

rent will be interpreted as a high value of m and therefore Ech,

when fitting Equation 10 to the data. Thus, for higher concen-

trations of charged acceptor-like defects, the tail slope deter-

mined by the fit (see Supporting Information File 1 for the fits

and simulations) will overestimate the real tail slope. However,

for intermediate and low concentrations of charged defects,

Equation 10 actually underestimates the tail slope showing that

even in intrinsic devices, the approximations of negligible diffu-

sion and zero field at the cathode are not correct and lead to

deviations between a full numerical model and the analytical

approximation.

Conclusion
It has been shown that charged acceptor-like defects lead to

barriers in electron-only devices that increase the relevance of

diffusion currents. Because diffusion currents are always

neglected when analytical equations are used to analyze either

the mobility μ or the slope Ech of an exponential band tail from

single carrier devices, these defects will lead to incorrect results.

Interestingly, when the voltage is corrected for a current-inde-

pendent barrier, as is often done in practice to correct for a

nonzero built-in voltage, the error in the mobility determined by

fitting of an analytical equation and the one used as input for the

simulation is low. In contrast, when the data is uncorrected, the

mobility will both depend strongly on the voltage range of the

fit and the concentration of charged defects. For instance, defect

concentrations of NT = 1017 cm−3 can lead to a fitted mobility

Figure 5: Comparison of the characteristic energy Ech,fit obtained by
fitting Equation 10 to simulated current–voltage curves of electron-only
devices assuming the characteristic energy Ech of the tail states that
was used as input in the simulation. A high concentration of defects
(NT = 1017 cm−3) leads to a reduction of the current as shown in
Figure 1a, which implies a much steeper slope of the curve in a certain
voltage range. This will then be interpreted as a broader tail slope by
Equation 10. If the concentration of defects is zero or low, Equation 10
will however underestimate the tail slope. The voltage range for the fits
is 1 V < V < 8 V for the case with NT = 1017 cm−3 and 0.1 V < V < 8 V
for all other cases.

that is several orders of magnitude smaller than the actual

mobility. In case of the determination of the tail slope from the

current–voltage curve of electron-only devices, a higher

concentration of acceptor-like defects will lead to an overesti-

mation and a lower concentration to an underestimation of the

actual tail slope. Here it is important to note that even without

any charged defects, the tail slope is not particularly well repro-

duced by the typically used analytical equations.

Supporting Information
Figure S1 shows the similarity between current–voltage

curves affected by (i) a nonzero built-in voltage and (ii)

space charge due to charged defects. The effect of built-in

voltage on forward- and reverse-bias current–voltage

curves is shown in Figure S2. Figure S3 discusses the effect

of series resistances of fitting current–voltage curves with

the Murgatroyd equation. Figures S4 to Figure S6 are the

fits used to create Figure 5.

Supporting Information File 1
Additional simulations.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-4-18-S1.pdf]
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